
A Brief Introduction to Characteristic Boundary
Conditions

Overview
Many interesting physical phenomena in nature can be described by the propagation of waves.
Some of the most prominent examples include the emanation of sound from an instrument, the
vibrations of a string, the breaking of waves on the shore, and even the formation of shocks
in supersonic flight. Each of these processes can be expressed mathematically, through the
form of a conservation law that describes how individual waves act to transport and preserve
quantities like mass, momentum, or energy.

In the absence of dissipative effects such as friction, conservation laws for wave propagation
problems are hyperbolic in nature, meaning all information within the system is transmitted in
a purely convective manner. Intricate systems such as the equations of gas dynamics, may
have multiple types of waves present, with each one affecting a very specific combination of
variables in the system. For example, when an acoustic wave passes through air it induces
minute changes in pressure, while leaving the local temperature completely unaltered.

Using the theory of characteristics, which underpins the broader study of hyperbolic equa-
tions, it is possible to derive a form of a given conservation law that reveals the behavior
associated with each kind of wave present in a system. Furthermore, it can be shown that we
can actually manipulate these waves, letting us enforce some desired behavior within the phys-
ical problem of interest. This has important consequences when considering cases on finite
domains, and leads to elegant and robust boundary condition treatment for problems solved
numerically on discrete meshes.

Characteristic Form of Hyperbolic Equations
It is paramount to note the subsequent derivation and notation was adopted from [1]. We start
with a generic hyperbolic conservation law of the form

ut + f (u)x = 0

where u is a vector and f (u) is a flux function. We can rewrite this equation in quasi-linear
form, i.e,

ut + Aux = 0

A =
∂ f (u)
∂u

Furthermore, since the system is hyperbolic it is diagonlizable with strictly real eigenvalues.
This leads to the two related eigenvalue problems of

AR = RΛ AT L = LΛ

where Λ, R, and L contain the eigenvalues, right eigenvectors, and left eigenvectors of A re-
spectively. The left eigenvectors are attained by considering the transpose of A, given by AT .
Physically, each eigenvalue corresponds to the speed at which a specific type of wave is prop-
agated by the system, such as waves traveling at ±c in the second order wave equation. Right
eigenvectors describe what combination of the variables in u are propagated by each wave.
Left eigenvectors describe how much of each variable is included in this combination.
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We can rewrite the equation further as

ut + RΛR−1ux = 0 or R−1ut + ΛR−1ux = 0

which effectively decouples the original system into a set of individual wave equations. Letting
w = R−1u be a vector of ’characteristic variables’ we can see that the above system is truly just
a set of first order wave equations of the form

wit + λiwix = 0

with wi the ith characteristic variable and λi the wave speed. For general non-linear problems
we retain the form

R−1ut + ΛR−1ux = 0

for which individual component equations of this system are given by

lTi ut + λilTi ux = 0

with lTi being a left eigenvector. We now define a new variable called the ’characteristic wave
amplitude variation’ as

Li = λilTi ux

or in matrix form

L = ΛR−1ux

with the name stemming from the fact that

lTi ut = −Li

thus the time variation of a given characteristic wave is governed by some L . Using these
definitions, we can rewrite the original governing equation as follows,

ut + f (u)x = ut + RL = 0

Now we make a distinct observation. If one is able to explicitly manipulate the values of L ,
in theory specific behaviors could be introduced into the original hyperbolic equation system.
The most logical place for this ’manipulation’ to occur is at boundary points. Consequently, it
is becoming evident that we can actually prescribe boundary condition behavior by modifying
the characteristic wave amplitude variations.

Implications for Boundary Conditions
The variation of characteristic waves at domain boundaries can be used to gain a physical un-
derstanding of boundary condition behavior. For this to occur, we need to consider a problem
bounded over some finite domain. An easy example is a one-dimensional hyperbolic problem
over the interval x ∈ D, withD = [0, L]. To further simplify our investigations into boundary
behavior, we focus exclusively on the boundary at x = L. As previously mentioned, a hyper-
bolic system of n variables has n characteristic waves, each wave propagating at a speed given
by an eigenvalue λ. Based on the speed of each wave, different situations arise at the boundary
x = L.

We first consider the case sketched in Fig. 1 where all eigenvalues are positive, i.e, λi >
0 i = 1, 2, 3, ... n. Physically this corresponds to all waves traveling with a positive speed,
meaning they each propagate in the +x direction. At the domain boundary, this means all in-
formation comes from within the domain itself, so the behavior of the boundary is determined
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Figure 1: Situation where all waves at boundary have a positive speed, with λi > 0 ∀ i

exclusively by right running characteristic waves . A physical example of this would be super-
sonic flow exiting a rocket nozzle. In this situation the local flow speed u is greater than the
local speed of sound c, meaning all characteristic wave speeds of the governing Euler equations
are positive (0 < u− c < u < u+ c). In this case no information can travel into the nozzle from
downstream, and the state of the nozzle exit is determined entirely by upstream conditions.

The second case to consider is sketched in Fig. 2 where at x = L there is a single wave with
a negative speed. Physically this corresponds to a waves traveling with a negative speed and
propagating in the −x direction. At the domain boundary, this means some information comes
from outside the domain, so the behavior of the boundary is determined by right running and
left running characteristic waves. A natural occurrence of this would be subsonic flow (u < c)
exiting a nozzle, where the characteristic wave speeds are both positive (0 < u < u + c) and
negative (u− c < 0). In this situation information must travel upstream into the nozzle, and the
state of the nozzle exit is now determined by both upstream and downstream conditions.

Figure 2: Situation where a wave at the boundary has a negative speed, with a single λi < 0

In this second case however, we have run into an issue. We know theoretically that our
boundary behavior is determined by downstream conditions, however our domain is truncated
at x = L. Consequently, we do not explicitly know how the incoming wave behaves and our
solution lacks vital information. In such cases the problem is said to be ill-posed. Luckily, a
workaround exists if one is able to manually impose conditions on the incoming wave!

We have already seen that the time variation of the characteristic waves in a given problem
is governed by vector L . At boundaries where λi < 0, if we were to explicitly set an associated
value of Li, we could directly influence the physics occurring at the boundary x = L.

For example, say we are studying acoustic waves propagating in a one-dimensional sub-
sonic flow. At x = L, we do not necessarily know what the incoming acoustic wave at speed
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λ1 = u − c looks like, so we need to make some assumptions. One option is to set L1 = 0,
giving

lT1 ut +L1 = lT1 ut + 0 = 0
∴ lT1 ut = 0

Mathematically, this renders the value of lT1 u constant in time, with the value of the wave being
fixed by the initial conditions. Physically, this condition dictates that the incoming acoustic
wave has no impact on the solution, and it is as if the wave never enters the domain at all. Such
a condition is called a ’non-reflecting boundary condition’ and aims to entirely remove the
effects of incoming waves from the solution. Another common practice is to set the value of the
incoming acoustic wave variation to the opposite of the outgoing acoustic wave, i.e,L1 = −L3.
By fixing the wave behavior in this manner, whatever variations induced by right running
acoustic waves are exactly canceled by an incoming, left running acoustic wave. This has the
effect of totally reflecting pressure disturbances at the boundary and creates a constant pressure
outlet.

Other mathematical conditions can be created by manipulating characteristic wave ampli-
tudes as well, and can be done so for any hyperbolic system of equations. These include
Neumann, Dirichlet, and non-reflecting boundaries, with the physical interpretation of each
condition being unique to the conservation law being considered. A more rigorous overview
of the importance of boundary conditions, with specific applications to gas dynamics, can be
found in [2] and references therein.

Application for Numerical Simulations
When attempting to find solutions to conservation laws, we often have to resort to simulation
techniques and attain numerical approximations to the true solution. In these computational
settings, solutions are typically sought after on a truncated, finite domain that is representative
of the actual problem at hand. For example, when trying to study supersonic flow over a
wing, it is simpler and more computationally efficient to consider a discretized domain over
a 2D airfoil cross section than to simulate the entire wing and the aircraft it is attached to.
One consequence of this however, is at the edges of our truncated domain we need to enforce
appropriate boundary conditions. This can be readily accomplished using characteristic type
boundary conditions, which help make our simulations well-posed.

However, these conditions must be properly implemented in a given code. A brief overview
of how to implement characteristic boundary treatment in a numerical setting is given below.
For ease, we assume a finite difference scheme is used on a discrete mesh, though the process
can be modified for other classes of numerical procedure.

• At interior mesh points, compute spatial flux derivatives as usual using f (u)x

• At boundary points compute the wave amplitude variations L = R−1Λux

– Ensure a proper 1-sided derivative scheme is used for ux

• For waves leaving the domain at boundaries, leave Li unaltered

• For waves entering the domain at boundaries, modify Li as needed

• At boundary points, supplant the term f (u)x with RL

– L has been modified to enforce desired boundary behavior

• Integrate the discretized conservation law in time at all interior and boundary points

• Repeat for each time step
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A Wave Equation Example
This overview concludes with a brief example of how to implement characteristic boundary
conditions on the second order wave equation. Consider the following equation on a compact
domain:

utt + c2uxx = 0
u(x, 0) = u0(x)
ut(x, 0) = v0(x)

x ∈ [0, L]

We can invoke a change of variables

w = ux v = ut

and rewrite 2nd order wave equation as system of first order equations[
w
v

]
t
+

[
−v
−c2w

]
x
= 0

where we have used

wt = uxt = utx = vx

Eigenvectors

To apply characteristic conditions, left and right eigenvectors of the flux Jacobian A = ∂ f
∂u are

needed. Taking

A =
[ ∂ f1
∂w

∂ f1
∂v

∂ f2
∂w

∂ f2
∂v

]
=

[
0 −1
−c2 0

]
The eigenstructure of A can be identified in a straightforward manner, giving

Λ =

[
c 0
0 −c

]
R =
[

1 1
−c c

]
L =
[
−c c
1 1

]
with the eigenvalues dictating wave speeds of ±c and the left and right eigenvectors satisfying
the needed orthogonality property. Thus the characteristic wave amplitude variations,L , are
given by

λ1 = c, L1 = λ1lT1

[
w
v

]
x
= c[−c 1]

[
w
v

]
x
= −c2wx + cvx

λ2 = −c, L2 = λ2lT2

[
w
v

]
x
= c[c 1]

[
w
v

]
x
= c2wx + cvx

Boundary Conditions
We can rewrite the system of first order PDEs according to

ut + f (u)x = ut + RL

which for the second order wave equation gives[
w
v

]
t
+

[
−v
−c2w

]
x
=

[
w
v

]
t
+

[
1 1
−c c

] [
L1
L2

]
= 0
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Thus we can come up with the following

wt + (L1 +L2) = 0
vt + (−L1 +L2) = 0

We can then use these expressions, along with the definitions of v = ut and w = ux, to
enforce various types of boundary conditions. In general, using a characteristic approach to
boundary conditions makes boundary behavior depend on the initial conditions w0 = u(x, 0)
and v0 = ut(x, 0), which is to be expected from the purely advective nature of the problem.
Assuming for ease u(x, 0) = ut(x, 0) = 0, and that we excite the wave with some prescribed
forcing function f (x, t), we can derive the following conditions:

Inlet (x=0) λ1 = c into domain
L1 = L2 Dirichlet
L1 = −L2 Neumann
L1 = 0 Non-reflecting

Outlet (x=L) λ2 = −c into domain
L2 = L1 Dirichlet
L2 = −L1 Neumann
L2 = 0 Non-reflecting

Once the solution for the system [w v]T has been solved, either numerically or analytically,
the original solution u(x, t) is obtained from

u(x, t) = u0(x) +
∫ t

t0
v(x, τ)dτ

References
[1] Kevin W Thompson. Time dependent boundary conditions for hyperbolic systems. Journal

of Computational Physics, 68(1):1–24, 1987.

[2] Tim Colonius. Modeling artificial boundary conditions for compressible flow. Annu. Rev.
Fluid Mech., 36(1):315–345, 2004.

6


